Dualising Initial Algebras
نویسندگان
چکیده
Whilst the relationship between initial algebras and monads is well understood, the relationship between final coalgebras and comonads is less well explored. This paper shows that the problem is more subtle than might appear at first glance: final coalgebras can form monads just as easily as comonads, and, dually, initial algebras form both monads and comonads. In developing these theories we strive to provide them with an associated notion of syntax. In the case of initial algebras and monads this corresponds to the standard notion of algebraic theories consisting of signatures and equations: models of such algebraic theories are precisely the algebras of the representing monad. We attempt to emulate this result for the coalgebraic case by first defining a notion of cosignature and coequation and then proving that the models of such coalgebraic presentations are precisely the coalgebras of the representing comonad.
منابع مشابه
Dualising Complexes and Twisted Hochschild (co)homology for Noetherian Hopf Algebras
We show that many noetherian Hopf algebras A have a rigid dualising complex R with R = A[d]. Here, d is the injective dimension of the algebra and ν is a certain k-algebra automorphism of A, unique up to an inner automorphism. In honour of the finite dimensional theory which is hereby generalised we call ν the Nakayama automorphism of A. We prove that ν = Sξ, where S is the antipode of A and ξ ...
متن کاملTwisted Poisson duality for some quadratic Poisson algebras
We exhibit a Poisson module restoring a twisted Poincaré duality between Poisson homology and cohomology for the polynomial algebra R = C[X1, . . . , Xn] endowed with Poisson bracket arising from a uniparametrised quantum affine space. This Poisson module is obtained as the semiclassical limit of the dualising bimodule for Hochschild homology of the corresponding quantum affine space. As a coro...
متن کاملConvexity, Duality and Effects
This paper describes some basic relationships between mathematical structures that are relevant in quantum logic and probability, namely convex sets, effect algebras, and a new class of functors that we call ‘convex functors’; they include what are usually called probability distribution functors. These relationships take the form of three adjunctions. Two of these three are ‘dual’ adjunctions ...
متن کاملOn the Relative Dualising Sheaf of a Symplectic Lefschetz Fibration
For the dualising sheaf ωX/B of a relatively minimal symplectic Lefschetz fibration π : X → B, we show that c21(ωX/B) ≥ 0. Some consequences related to the Hodge bundle are obtained.
متن کاملOn Coprime Modules and Comodules
Many observations about coalgebras were inspired by comparable situations for algebras. Despite the prominent role of prime algebras, the theory of a corresponding notion for coalgebras was not well understood so far. Coalgebras C over fields may be called coprime provided the dual algebra C∗ is prime. This definition, however, is not intrinsic it strongly depends on the base ring being a field...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematical Structures in Computer Science
دوره 13 شماره
صفحات -
تاریخ انتشار 2003